Washtenaw Community College Comprehensive Report

CPS 272 Data Structures with C++ Effective Term: Spring/Summer 2025

Course Cover

College: Business and Computer Technologies **Division:** Business and Computer Technologies

Department: Computer Science & Information Technology

Discipline: Computer Science

Course Number: 272 Org Number: 13420

Full Course Title: Data Structures with C++
Transcript Title: Data Structures C++

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Course Change

Change Information:

Consultation with all departments affected by this course is required.

Outcomes/Assessment
Objectives/Evaluation
Rationale: Updating for Canvas

Proposed Start Semester: Winter 2025

Course Description: In this course, students continue the C++ sequence and study more advanced computer science features as implemented in C++. Topics include advanced data structures, complexity/efficiency of algorithms, recursion and problem-solving. These techniques will be applied toward building a working software application.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 Student: 0 Clinical: Instructor: 0 Student: 0

Total Contact Hours: Instructor: 60 **Student:** 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

CPS 271 minimum grade "C"

General Education

General Education Area 7 - Computer and Information Literacy

Assoc in Arts - Comp Lit Assoc in Applied Sci - Comp Lit Assoc in Science - Comp Lit

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Identify appropriate use of recursive programming techniques.

Assessment 1

Assessment Tool: Outcome-related departmental exam questions

Assessment Date: Fall 2024

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of the student will score 70% or higher.

Who will score and analyze the data: Departmental faculty

2. Identify appropriate use of programming data structures: vectors, linked lists, stacks, queues, hash, graphs and binary search trees.

Assessment 1

Assessment Tool: Outcome-related departmental exam questions

Assessment Date: Fall 2024

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of the student will score 70% or higher.

Who will score and analyze the data: Departmental faculty

3. Apply advanced software engineering techniques in developing a working software program.

Assessment 1

Assessment Tool: Outcome-related portfolio of software programs

Assessment Date: Fall 2024

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally-developed rubric

Standard of success to be used for this assessment: 70% of the student will score 70% or higher.

Who will score and analyze the data: Departmental faculty

Course Objectives

- 1. Demonstrate proficiency in analyzing and using object-oriented classes.
- 2. Demonstrate proficiency using recursion to solve computer problems.
- 3. Demonstrate proficiency in using a vector data structure.
- 4. Demonstrate proficiency in using a linked list data structure.
- 5. Demonstrate proficiency in using a stack data structure.
- 6. Demonstrate proficiency in using a queue data structure.
- 7. Demonstrate proficiency in using a binary tree (or set) data structure.

- 8. Create a program that is logical, easy to understand, compiles and executes properly to solve a stated problem.
- 9. Demonstrate proficiency in using a hashing data structure.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Computer workstations/lab

<u>Reviewer</u>	Action	Date
Faculty Preparer:		
Khaled Mansour	Faculty Preparer	Jan 18, 2024
Department Chair/Area Director:		
Scott Shaper	Recommend Approval	Jan 22, 2024
Dean:		
Eva Samulski	Recommend Approval	Jan 23, 2024
Curriculum Committee Chair:		
Randy Van Wagnen	Recommend Approval	Jan 28, 2025
Assessment Committee Chair:		
Jessica Hale	Recommend Approval	Feb 18, 2025
Vice President for Instruction:		
Brandon Tucker	Approve	Feb 18, 2025

Washtenaw Community College Comprehensive Report

CPS 272 Data Structures with C++ Effective Term: Fall 2019

Course Cover

Division: Business and Computer Technologies

Department: Computer Instruction **Discipline:** Computer Science

Course Number: 272 Org Number: 13420

Full Course Title: Data Structures with C++ **Transcript Title:** Data Structures C++

Is Consultation with other department(s) required: No

Publish in the Following: College Catalog, Time Schedule, Web Page

Reason for Submission: Change Information:

Consultation with all departments affected by this course is required.

Rationale: This will be revised because of the course assessment.

Proposed Start Semester: Fall 2019

Course Description: In this course, students continue the C++ sequence and study more advanced

computer science features as implemented in C++. Topics include advanced data structures,

complexity/efficiency of algorithms, recursion and problem-solving.

Course Credit Hours

Variable hours: No

Credits: 4

Lecture Hours: Instructor: 60 Student: 60

Lab: Instructor: 0 **Student:** 0 **Clinical: Instructor:** 0 **Student:** 0

Total Contact Hours: Instructor: 60 **Student:** 60

Repeatable for Credit: NO Grading Methods: Letter Grades

Audit

Are lectures, labs, or clinicals offered as separate sections?: NO (same sections)

College-Level Reading and Writing

College-level Reading & Writing

College-Level Math

No Level Required

Requisites

Prerequisite

CPS 271 minimum grade "C"

General Education

General Education Area 7 - Computer and Information Literacy

Assoc in Arts - Comp Lit

Assoc in Applied Sci - Comp Lit Assoc in Science - Comp Lit

Request Course Transfer

Proposed For:

Student Learning Outcomes

1. Identify appropriate use of object-oriented design methods.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of the student will score 70% or higher

Who will score and analyze the data: Departmental faculty

2. Identify appropriate use of recursive programming techniques.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of the student will score 70% or higher

Who will score and analyze the data: Departmental faculty

3. Identify appropriate use of programming data structures: vectors, linked lists, stacks, queues and binary trees.

Assessment 1

Assessment Tool: Departmental exam

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Answer key

Standard of success to be used for this assessment: 70% of the student will score 70% or higher

Who will score and analyze the data: Departmental faculty

4. Demonstrate sound software engineering techniques in developing a working software program.

Assessment 1

Assessment Tool: A portfolio of software programs submitted by students will be blind graded.

Assessment Date: Fall 2021

Assessment Cycle: Every Three Years Course section(s)/other population: All Number students to be assessed: All

How the assessment will be scored: Departmentally developed rubric

Standard of success to be used for this assessment: 70% of the student will score 70% or higher

Who will score and analyze the data: Departmental faculty

Course Objectives

1. Demonstrate proficiency in analyzing object-oriented classes.

- 2. Demonstrate proficiency in using object-oriented classes.
- 3. Demonstrate proficiency using recursion to solve computer problems.
- 4. Demonstrate analyzing the efficiency of recursive solutions.
- 5. Demonstrate proficiency in using a vector data structure.
- 6. Demonstrate proficiency in using a linked list data structure.
- 7. Demonstrate proficiency in using a stack data structure.
- 8. Demonstrate proficiency in using a queue data structure.
- 9. Demonstrate proficiency in using a binary tree (or set) data structure.
- 10. Create a program that is logical, easy to understand and properly indented to solve a stated problem.
- 11. Create a program that solves a stated problem and compiles properly.
- 12. Create a program that executes properly to solve a stated problem.

New Resources for Course

Course Textbooks/Resources

Textbooks Manuals Periodicals Software

Equipment/Facilities

Reviewer	Action	Date
Faculty Preparer:		
Khaled Mansour	Faculty Preparer	Jan 10, 2019
Department Chair/Area Director:		
Philip Geyer	Recommend Approval	Mar 11, 2019
Dean:		
Eva Samulski	Recommend Approval	Mar 15, 2019
Curriculum Committee Chair:		
Lisa Veasey	Recommend Approval	Apr 02, 2019
Assessment Committee Chair:		
Shawn Deron	Recommend Approval	Apr 03, 2019
Vice President for Instruction:		
Kimberly Hurns	Approve	Apr 07, 2019